

Communication

Enantioselective Addition of Nitrones to Activated Cyclopropanes

Mukund P. Sibi, Zhihua Ma, and Craig P. Jasperse

J. Am. Chem. Soc., 2005, 127 (16), 5764-5765• DOI: 10.1021/ja0421497 • Publication Date (Web): 29 March 2005

Downloaded from http://pubs.acs.org on March 25, 2009

More About This Article

Additional resources and features associated with this article are available within the HTML version:

- Supporting Information
- Links to the 21 articles that cite this article, as of the time of this article download
- Access to high resolution figures
- Links to articles and content related to this article
- Copyright permission to reproduce figures and/or text from this article

View the Full Text HTML

Published on Web 03/29/2005

Enantioselective Addition of Nitrones to Activated Cyclopropanes

Mukund P. Sibi,* Zhihua Ma, and Craig P. Jasperse

Department of Chemistry, North Dakota State University, Fargo, North Dakota 58105

Received December 30, 2004; E-mail: Mukund.Sibi@ndsu.edu

Diactivated cyclopropanes undergo nucleophile addition, which results in ring-opened products, ordinarily under forcing conditions.¹ Several groups have shown that Lewis acids can effectively activate addition of electron-rich olefins, indoles, and β -ketoesters.² Recently, Young and Kerr reported the Yb(OTf)₃-mediated addition of nitrones, resulting in the formation of racemic tetrahydro-1,2-oxazine products.³ Tetrahydro-1,2-oxazines⁴ have potential as therapeutic agents⁵ and as chiral building blocks,⁶ and their substructure is part of bioactive natural products.⁷ In this paper, we demonstrate the first examples of chiral Lewis acid catalysis in the formation of tetrahydro-1,2-oxazines with very high enantiose-lectivity.

Our experiments began with the identification of an optimal chiral Lewis acid system for the reaction of cyclopropane **1a** with nitrone **2a** (Table 1).⁸ For initial experiments, we used 30 mol % catalyst loading in dichloromethane with 4 Å molecular sieves at room temperature. Reactions with ytterbium triflate as a Lewis acid and a variety of PyBox ligands led to low enantioselectivity for the tetrahydro-1,2-oxazine product **3a** (entries 1–4).⁹ The use of bisoxazoline ligands **4e** and **4f** with Cu(OTf)₂ and MgI₂ was also ineffective (entries 5–7). Recently, Kanemasa has developed a highly effective chiral Lewis acid system derived from nickel perchlorate and ligand **4g** and demonstrated its broad-based utility.¹⁰ This chiral Lewis acid proved to be very effective (96% yield, >80% ee, entry 8). Molecular sieves were important for obtaining good yield (entry 9). THF as a solvent also gave good results, as long as molecular sieves were included (entry 10).

Having identified a promising chiral Lewis acid for tetrahydro-1,2-oxazine formation, we evaluated the effect of the diester substituents on yield and selectivity (Table 2). The diethyl substrate **1b** showed the best characteristics with both *N*-methyl nitrone **2a** (entries 1–3) and *N*-phenyl nitrone **2b** (entries 4–6), giving high yield and selectivity (entries 2 and 5). Reaction with the bulky *tert*butyl ester **1c** was slow (entries 3 and 6). The more reactive *N*-phenyl nitrone **2b** gave higher enantioselectivities than did nitrone **2a** (compare entries 4 versus 1, and 5 versus 2). Using ethyl ester **2b**, the catalyst loading could be lowered to 10 mol % without compromising selectivity or yield (compare entry 2 with entries 7 and 8).

The breadth and scope for the reaction involving different nitrones was investigated next, using cyclopropane **1b** and the optimal catalyst (Table 3, 10% catalyst). A variety of nitrones added in high yields (entries 1-7). The enantioselectivity for the products was very high (entries 1-5) except with nitrones derived from cinnamyl aldehyde (entry 6) and furfural (entry 7).

Table 4 shows results with mono- and disubstituted cyclopropane diesters. Methyl- and phenyl-substituted cyclopropanes **1d** and **1e** (racemic mixtures) reacted in high yields (entries 1-3). As observed by Kerr,^{3a} the additions were completely regioselective, with the oxygen end of the dipole adding to the substituted rather than the unsubstituted carbon of the cyclopropane. For monosubstituted cyclopropanes **1d** and **1e**, trans/cis mixtures resulted under chiral

Table 1. Evaluation of Reaction Conditions^a

^{*a*} For reaction conditions, see Supporting Information. ^{*b*} Isolated yield. ^{*c*} Determined by chiral HPLC. ^{*d*} No MS 4 Å. ^{*e*} THF as a solvent with MS.

Ni(ClO₄)₂-4g catalysis (entries 1–3). The low diastereoselectivity under chiral Ni(ClO₄)₂-4g catalysis contrasts the strong cisselectivity using achiral Yb(OTf)₃ (entry 4).^{3a} More importantly, the chiral catalyst gave good enantioselectivity for both diastereomers, particularly for the trans isomers (\geq 95% ee, entries 1–3). Addition to dimethyl- and cyclohexyl-disubstituted substrates 1f and 1g was also completely regioselective and proceeded with superb enantioselectivity (entries 5 and 6), although yields were somewhat lower. In terms of reactivity, the substituted cyclopropanes 1d–1g in Table 4 are much more reactive than the unsubstituted substrates 1a–1c, reacting completely within hours. In a study using nitrone 2a, the relative reactivity was found to be 1e, 1f > 1a > 1a.

Young and Kerr^{3a} postulated three scenarios for the addition of nitrones to activated cyclopropanes: (1) stepwise attack by nitrone oxygen on the cyclopropane ring (S_N2), followed by malonate attack on the resulting iminium; (2) a concerted cycloaddition of the nitrone across the cyclopropane σ -bond; and (3) ring opening of the activated cyclopropane to a dipolar species which is trapped by the nitrone (S_N1). A mechanism involving extensive or total ring opening to a zwitterionic species appears to be operative under Table 2. Effect of Ester Substituent on Selectivity

entry	substituent	nitrone	product	time (days)	yield (%) ^a	ee (%) ^b
1	1a	2a	3a	2	96	89
2	1b	2a	3b	2	99	92
3	1c	2a	3c	3	<5	-
4	1 a	2b	3d	2	97	91
5	1b	2b	3e	2	99	94
6	1c	2b	3f	3	39	95
7^c	1b	2a	3b	2	99	92
8^d	1b	2a	3b	2	99	91

^{*a*} Isolated yield. ^{*b*} Determined by chiral HPLC or chiral GC. ^{*c*} With 20 mol % catalyst. ^{*d*} With 10 mol % catalyst.

Table 3. Reaction with Different Nitrones

^a Isolated yield. ^b Determined by chiral HPLC.

Table 4. Reactions with Substituted Cyclopropanes^a

$\begin{array}{c} 0 & 0 \\ 0 & 0 \\ R^{1} \\ R^{2} \end{array} + \begin{array}{c} -0 \\ 0 \\ R^{1} \\ Ar \end{array}$	80 mol% <u>Ni(CIO₄)₂/Lig. 4</u> CH ₂ Cl ₂ , 0.1M, rt 4A MS, 2-8 h	MeO ₂ C R ¹ R ²	CO ₂ Me Ar D ^N Me
$\begin{array}{lll} \mbox{1d} R^1 = Me, R^2 = H & \mbox{2a} Ar = Ph \\ \mbox{1e} R^1 = Ph, R^2 = H & \mbox{2c} Ar = 4B \\ \mbox{1f} R^1, R^2 = Me \\ \mbox{1g} R^1, R^2 = -(CH_2)_5 - \end{array}$	3I Ar = 4Br-P 3m Ar = 4Br- 3n Ar = 4Br- 3n Ar = Ph, F 3o Ar = Ph, F 3p Ar = 4Br-I	h, R ¹ = Me, Ph, R ¹ = Pf R ¹ = Ph, R ² R ¹ , R ² = Me Ph, R ¹ , R ² =	, R ² = H n, R ² = H = H e = -(CH ₂) ₅ -
	vield		66

entry	substituent	R ¹	\mathbb{R}^2	product	(%) ^b	trans/cisc	trans (cis) ^d
1	1d	Me	Н	31	99	0.8/1	96 (90)
2	1e	Ph	Н	3m	99	1.4/1	95 (90)
3^e	1e	Ph	Н	3n	99	1.4/1	96 (90)
4^{f}	1e	Ph	Н	3n	84	0/100	-
5	1f	Me	Me	30	73	-	96
6	1g	-(CH ₂) ₅ -		3p	54	-	99

^{*a*} For reaction conditions, see Supporting Information. ^{*b*} Isolated yield. ^{*c*} Ratio determined by NMR. ^{*d*} Determined by chiral HPLC. ^{*e*} Nitrone **2a** was used. ^{*f*} Racemic reaction using achiral Yb(OTf)₃ as catalyst and nitrone **2a**, without MS (ref 3a).

our conditions. The relative reactivity of mono- and disubstituted substrates 1d-1g reflects the degree to which the cationic end of a zwitterion is stabilized and correlates standard S_N1 -type reactivity.

The regioselective preference for nitrone addition to the more substituted carbon also fits mechanism 3.¹¹ The Lewis acid assists ring opening by stabilizing the malonate anion. The low cis/trans diastereoselectivity (but high enantioselectivity) contrasts the cis-selectivity observed using achiral Yb(OTf)₃^{3a} and suggests that capture of the zwitterion by nitrone occurs stepwise.¹² The chiral nickel is probably able to control the stereocenter proximal but not distal to the malonate.¹³ Work to expand the utility of enantioselective additions to activated cyclopropanes is ongoing.

Acknowledgment. Our research program is supported by grants from the NIH and NSF.

Supporting Information Available: Characterization data for compounds 1-4 and experimental procedures. This material is available free of charge via the Internet at http://pubs.acs.org.

References

- (a) Danishefsky, S. Acc. Chem. Res. 1979, 12, 66. (b) Reissig, H.-U.; Zimmer, R. Chem. Rev. 2003, 103, 1151. (c) Yu, M.; Pagenkopf, B. L. Tetrahedron 2005, 61, 321.
- (2) (a) Beal, R. B.; Dombrowski, M. A.; Snider, B. B. J. Org. Chem. 1986, 51, 4391. (b) Kotsuki, H.; Arimura, K.; Maruzawa, R.; Ohshima, R. Synlett 1999, 650. (c) England, D. B.; Kuss, T. D. O.; Keddy, R. G.; Kerr, M. A. J. Org. Chem. 2001, 66, 4704.
- (3) (a) Young, I. S.; Kerr, M. A. Angew. Chem., Int. Ed. 2003, 42, 3023. (b) Young, I. S.; Kerr, M. A. Org. Lett. 2004, 6, 139. (c) Ganton, M. D.; Kerr, M. A. J. Org. Chem. 2004, 69, 8554. For recent work on donor– acceptor cyclopropanes, see: Yu, M.; Pagenkopf, B. L. J. Am. Chem. Soc. 2003, 125, 8122.
- (4) Approaches to tetrahydro-1,2-oxazines: (a) Pulz, R.; Cicchi, S.; Brandi,
 A. Reissig, H.-U. *Eur. J. Org. Chem.* 2003, 1153. (b) Yamamoto, Y.;
 Momiyama, N.; Yamamoto, H. *J. Am. Chem. Soc.* 2004, *126*, 5962. (c)
 Yoon, S. C.; Kim, K.; Park, Y. J. *J. Org. Chem.* 2001, *66*, 7334.
- (5) Yu, Q.-s.; Zhu, X.; Holloway, H. W.; Whittaker, N. F.; Brossi, A.; Greig, N. H. J. Med. Chem. 2002, 45, 3684–3691.
- (6) (a) Pulz, R.; Al-Harrasi, A.; Reissig, H.-U. Org. Lett. 2002, 4, 2353. (b) Buchholz, M.; Reissig, H.-U. Eur. J. Org. Chem. 2003, 3524. (c) Tishkov, A. A.; Reissig, H.-U.; Ioffe, S. L. Synlett 2002, 863.
- (7) (a) Uchida, I.; Shigehiro, T.; Hiroshi, K.; Sumio, K.; Hashimoto, M.; Tada, T.; Shigetaka, K.; Morimoto, Y. J. Am. Chem. Soc. **1987**, 109, 4108. (b) Terano, H.; Takase, S.; Hosoda, J.; Kohsaka, M. J. Antibiot. **1989**, 42, 145.
- (8) For enantioselective reactions involving nitrones, see: (a) Carmona, D.; Lamata, M. P.; Viguri, F.; Rodriguez, R.; Oro, L. A.; Balana, A. I.; Lahoz, F. J.; Tejero, T.; Merino, P.; Franco, S.; Montesa, I. J. Am. Chem. Soc. 2004, 126, 2716–2717. (b) Sibi, M. P.; Ma, Z.; Jasperse, C. P. J. Am. Chem. Soc. 2004, 126, 718–719.
- (9) For reaction conditions and other experimental details, see Supporting Information.
- (10) (a) Kanemasa, S.; Oderaotoshi, Y.; Tanaka, J.; Wada, E. J. Am. Chem. Soc. 1998, 120, 12355. (b) Shirahase, M.; Kanemasa, S.; Oderaotoshi, Y. Org. Lett. 2004, 6, 675. (c) Kanemasa, S.; Oderaotoshi, Y.; Sakaguchi, S.-i.; Yamamoto, H.; Tanaka, J.; Wada, E.; Curran, D. P. J. Am. Chem. Soc. 1998, 120, 3074.
- (11) That reversible formation of a zwitterion can occur is supported by a control experiment in which racemic substrate 1e becomes optically active (39% ee) following exposure to Ni(ClO₄)₂-4g.
- (12) When racemic product 3a was exposed to Ni(ClO₄)₂-4g, no enantiomeric enrichment was observed. This suggests that nitrone addition is irreversible with stereoselectivity under kinetic control.
- (13) Nonselective C-O bond formation probably occurs first, remote from and uncontrolled by the chiral nickel malonate, followed by nickelcontrolled formation of C3. An alternative possibility is that C-C bond formation may occur first, but neither the nickel nor C3 stereocenters provide high stereoinduction at the C-O bond forming step.

JA0421497